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Abstract: 

In this paper, we workout a detailed mathematical analysis for a  new learning algorithm termed 
Cascade Error Projection (CEP) and  a general learning fvame work. This frame work can be used to 
obtain the cascade correlation learning algorithm by choosing a  particular set of parameters. 
Furthermore, CEP learning algorithm is operated only on one layer, whereas the other set of weights can 
be calculated deterministically. In association with the dynamical stepsize change concept to convert the 
weight update from infinite space into a  finite space, the relation between the current stepsize and the 
previous enera  level is also  given  and the estimation procedure for optimal stepsize is used for validation 
of our proposed technique. 

The weight values of  zero  are used for starting the learning for every layer, and  a single hidden 
unit is applied instead of using a pool of candidate hidden units similar to cascade correlation scheme. 
Therefore, simplicity in hardware implementation is also obtained Furthermore, this analysis allows us 
to select from other methods (such as the conjugate gradient descent or the Newton’s second order) one 
of which will be  a good candidate for the learning technique. The choice of learning technique depends 
on the constraints of  the  problem (e.g., speed, performance, and hardware implementation); one 
technique may be more suitable than others. Moreover, for a discrete weight space, the theoretical 
analysis presents the capability of learning with limited weight quantization. Finally, 5- to 8-bit parity 
and chaotic time series prediction  problems are investigated; the simulation results demonstrate that 4- 
bit or more weight quantization is suficient  for learning neural network using CEP. In addition, it is 
demonstrated that this technique is able to compensate for less bit weight resolution by incoporating 
additional hidden units. However, generation result may suffer somewhat with lower bit weight 
quantization. 

I-Introduction 

There are many ill-defined problems in pattern recognition, classification, 
vision, and speech recognition which need to be solved in real time [ 1-31. One of the 
most attractive features of the neural network is a massively parallel processing 
topology that offers tremendous speed specially when implemented in hardware. 
Generally, neural network approaches in hardware face two main obstacles: 
(1) difficulty of network convergence due to the learning algorithm itself as well as 
the limited precision of the devices; 
(2) high cost of implementing hardware to truly mimic the synapse and neuron 
transfer functions dictated by the algorithm. 
Furthermore, the convergence and the implementable hardware have a mutual 
correlation to each other; for example, the convergence of the learning network depends 
on the weight resolution available in synapse [4-61, and the cost of implementation of 
each bit in synapse grows, at least doubly, in silicon area, power, and  connectivity[7-81 

In this paper, CEP learning algorithm is presented. It offers a simple learning 
method using a one-layer perceptron approach and a deterministic calculation for the 
other layer. Such a simple procedure offers a fast, reliable, and implementable learning 
algorithm. In addition, the learning technique is not only tolerant of 3- and 4-bit weight 
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resolution in synapse, but its simplicity indicates the network can be robustly 
implementable in VLSI hardware. To validate the new learning theory of CEP, 
simulations for 5- to 8-bit parity and chaotic time series problems are investigated in 
weight quantization of a floating point machine (32-bit for float and 64-bit for double 
precision) and are compared with resolutions using synapses with limited weight 
quantizations (3- to 6-bit weight resolution) of VLSI hardware. 

I1 Mathematical foundation of Cascade  Error  Projection 

1. Continuous  weight  space: 
In this analysis, we only focus on cascading architecture with one hidden unit added one 
at a time when needed. 
Assume that the network contains n hidden units (see Fig. 1 )  and the learning cannot be 
improved any further in the energy level. At this point, a new hidden unit n+l is added 
to  the network. 

Figure 1: Schematic diagram for CEP learning with a newly added 
hidden unit (n+l). Blank circles and squares are  the weight components 
that are determined by iterative learning and calculation, respectively. 

N is the dimension of the input space, n+l is the dimension of the expanded input space 
(n+l is dynamically changed and is based on the learning requirement), and m is  the 
dimension of the output space, P is the number of training patterns. Finally, f is a 
sigmoidal transfer function which is defined by: 

Other notations are defined as follows: 
Who denotes the weight vector between newly added hidden unit n+l and the  output 0,  

and qh is the weight vector between input units (including original inputs and previous 
hidden units) and a newly added hidden unit. 
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E: = tf - o%(n) denotes the error for an output index o and training pattern p between 
target t and  the  actual output o(n). n indicates the output with n hidden units in the 
network. 
f R (n)  denotes the output transfer function derivative with  respect to its input index o 
and the training patternp. 
fh”(n + 1) denotes the transfer function of hidden unit n+Z for a training patternp. 

X p  denotes the input patternp. 

The  energy function is  defined as follows: 

p=l p=l o = l  p=l o=l 

The difference of energy between the network with n hidden units and the network with 
n+Z hidden units can be  obtained as, 

o= 1 p=l p= 1 

where who f,” (n + 1) is small. This assumption is needed  for nonlinear transformation 
function only. 
As proved in ref. 9, the sufficient condition for maximum energy reduction between 
hidden unit n and a newly  added  hidden  unit n+Z with  respected to w,, is: 

p=l o=l 

p=l 

Let 

.................. 
r =  .................. 

I .................. 

Then, r ~ [ - 1 , 1 ] ~ .  
and 

- 
A% + 1) 

F,(n + 1) = ........... 

........... 

........... 

-AP (n  + 1) 
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We can rewrite equation (1) using a matrix notation as follows: 
AE = rnr ’4, (n  + 1) (2) 

From (1) and (2), the energy reduction is dependent on a match between r and Fh (n + 1) . 
The technique to match r with Fh (n + 1) can include, e.g. perceptron learning with 
gradient descent, maximum correlation or covariance with gradient ascent, conjugate 
gradient, and Newton’s second order method. Therefore, the learning network 
performance really depends on the learning technique chosen for matching the error 
surface r and Fh (n + 1) . In equation (2), let f f: (n)  =l ;  then it can be rewritten as: 

I’ 1 Ill 

AE = ~ { f l ( n + l ) ~ ~ ( t :  -o,”(n))} 
p=l rn O=l 

Thus equation ( 3 )  is a special case for the general formulation of equation (2). From (3), 
maximum correlation or covariance is applied to maximize AE, then it represents the 
technique of cascade correlation learning algorithm which has been reported in literature 
by Fahlman [lo]. 

2. Discrete Weight Space: 

In continuous weight space, the weight quantization can be considered as infinite. 
However, in hardware, weight quantization is always finite and limited. Therefore, it is 
necessary to convert the weight updates Aw to a finite weight quantization Aw*. As 
proved in ref. 9, learning can be done with limited weight quantization as long as the 
difference between Aw and Aw* is viewed as equivalent independent white noise 
(round-off conversion technique) and the stepsize which is used to convert from Aw to 
Aw* must not be fixed. The dynamical stepsize can be  roughly estimated as follows: 
In continuous space, the energy reduction is: 

P nr 

p=l o=l 

During learning, limited weight quantization value, Aw* directly affects the output of the 
(n+l)th hidden unit f h  (n  + 1). It is expressed as: 

N+1 I1 

?hp (n  + 1) = f,” ( x  Exi + Exh ( j ) )  , E is a weight component in finite weight space. 
i= l  . j= l  

The reduction of energy in discrete (finite) weight space [9] is: 
P 111 

A E = E ( n ) - E ( n + l ) = T X ~ f : f ’ f : C ( n + l )  
p=l o=l 

Our main focus is finding the conversion factor (stepsize) which is based on the known 
factor (e.g. previous energy E(n)), thereby the conversion factor (stepsize) can be 
estimated, and the learning being conducted in limited weight quantization, can be 
enhanced. 
A E o c Z ( n + l )  (6) 
Ignoring the nonlinear characteristic, it is roughtly estimated that: 
T:(n + 1) oc E oc stepsize(n + 1) (7) 
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From ( 9 ,  (6), and (7) one can express 
stepsize(n + 1) oc E(n) (8) 
The expression in (8) is a critical step in estimating the dynamical stepsize which is 
dependent on the previous energy of the network. In other words, the expression can be 
written as: 
stepsize(n + 1) = a&n) 
The value of a was obtained ad hoc for each application through experiments. 

111. Simulations  Using CEP 

As reported in [ 1 1 - 121, we use gradient descent technique for learning Wih and calculate 
the Who. 

1) Problems: 

Using this technique, we have solved: 
0 5 -  to 8-bit parity problems 
0 chaotic time series problem 

The constraints for weight space are: 
a. no limited weight quantization (floating point 32-bit for single precision and 64-bit 

b. the limited weight quantization from 3- to 6-bit for parity and 4- to 6-bit for chaotic 
for double precision); and, 

time series problems. 

2) Conversion technique (round-off technique) 

Awih (n) = stepsize(n) * int( - 0.5) i f  ( + int( AW’h(n) - 0.5)) 2 -2’and Aw,(n) < 0 

0 Otherwise 

AWjh (n )  ”lh (n)  
stepsize(n)  stepsize( n) stepsize( n) 

3) Simulation results: 

Parity Problem: 

As noted earlier, we are solving 5-,6-,7-, and 8-bit parity with different synaptic 
resolution. We compare the results of higher and lower synaptic resolution to show the 
robustness of such an algorithm for hardware implementation [ 1 1 - 121. 
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Figure 2: The chart shows CEP learning capability and the 
number of hidden units required to correctly solve 5- to 8-bit 
parity problems using round-off technique. x axis represents 
weight quantization (3-6 and 64-bit) and y axis shows the 
resulting number of hidden units (limited to 20). Each 
learning hidden unit is provided with 100 epoch iterations. 
As shown, a lager number of hidden units compensate for 
the lower weight resolution. 

Chaotic Time Series Problem: 
The data in this problem represents chaos and never repeated. However, this data 
between past, present, and future are correlated in high order. To validate the capability 
of CEP as shown in theory, we  use CEP learning technique under constraints of limited 
weight quantization (4-, 6-, and 64-bit weight resolution) to capture the high order 
correlation of  this problem. 
In this experiment, we use x i ,   x i + ] ,  xj+2,  xi+3 and the target is xi+4 . The number of 
training data is 351 and test data is 65 1 and no cross validating data is applied in this 
phase. 
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Figure 3: Data sets of chaotic time series problem. (a). training set to the 
CEP neural network, and (b). Test set which has no overlap with training 
set. 
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Figure 4: Simulation Results of CEP for chaotic time series prediction 
problem. Top trace contains four curves: ideal data, 64-bit, 6-bit and 4-bit 
prediction results. Bottom trace contains : errors between ideal data and 
64-bit, 6-bit, and 4-bit generalization data. 

The results in Figure 4 show that the error between ideal data and prediction with 64-bit 
weight learning network is within +/-0.01 and is like white noise, whereas, 6-bit error is 
more harmonic than 4-bit error prediction. These results can be interpreted to infer that 
the more bit weight quantization is available for learning the better and smoother the 
transform would be. In addition, the better and smoother transformation will help 
network to interpolate for predictions. 

IV. Conclusions 

In this paper, we have shown that CEP is a reliable technique for both software- and 
hardware-based neural network learning. From this analysis, it is shown that the CC 
algorithm is a special case and can be understood in greater depth with this analysis. 
Moreover, the theoretical analysis provides us with the general framework of the learning 
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architecture, and the particular learning algorithm can be independently studied for its 
suitability for a given application associated with given constraints specific to each 
problem. For example, for hardware implementation CEP is advantageous, but for 
software, covariance or Newton's second order method is more advantageous). For the 
CEP learning algorithm, the advantages can be summarized as follows: 

A fast and reliable learning technique 
A hardware implementable learning technique 
Learning scheme is tolerant of lower weight resolutions. 

0 A robust model in learning neujral networks 
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